Ensemble Sampling

نویسندگان

  • Xiuyuan Lu
  • Benjamin Van Roy
چکیده

Thompson sampling has emerged as an effective heuristic for a broad range of online decision problems. In its basic form, the algorithm requires computing and sampling from a posterior distribution over models, which is tractable only for simple special cases. This paper develops ensemble sampling, which aims to approximate Thompson sampling while maintaining tractability even in the face of complex models such as neural networks. Ensemble sampling dramatically expands on the range of applications for which Thompson sampling is viable. We establish a theoretical basis that supports the approach and present computational results that offer further insight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling strategies and square root analysis schemes for the EnKF 1

The Ensemble Kalman Filter (EnKF), in its native formulation as originally introduced by Evensen (1994) and Burgers et al. (1998), has used pure Monte Carlo sampling when generating the initial ensemble, the model noise and the measurement perturbations. This has been a useful approach since it has made it very easy to interpret and understand the method (see Evensen, 2003). Further, sampling e...

متن کامل

On the efficiency of biased sampling of the multiple state path ensemble.

Developed for complex systems undergoing rare events involving many (meta)stable states, the multiple state transition path sampling aims to sample from an extended path ensemble including all possible trajectories between any pair of (meta)stable states. The key issue for an efficient sampling of the path space in this extended ensemble is sufficient switching between different types of trajec...

متن کامل

Reproducibility of Soil Moisture Ensembles When Representing Soil Parameter Uncertainty Using a Latin Hypercube-Based Approach with Correlation Control

[1] Representation of model input uncertainty is critical in ensemble‐based data assimilation. Monte Carlo sampling of model inputs produces uncertainty in the hydrologic state through the model dynamics. Small Monte Carlo ensemble sizes are desirable because of model complexity and dimensionality but potentially lead to sampling errors and correspondingly poor representation of probabilistic s...

متن کامل

Analysis and Optimization of Weighted Ensemble Sampling∗

We give a mathematical framework for weighted ensemble (WE) sampling, a binning and resampling technique for efficiently computing probabilities in molecular dynamics. We prove that WE sampling is unbiased in a very general setting that includes adaptive binning. We show that when WE is used for stationary calculations in tandem with a coarse model, the coarse model can be used to optimize the ...

متن کامل

A Moment Matching Particle Filter for Nonlinear Non-Gaussian Data Assimilation

The ensemble Kalman filter is now an important component of ensemble forecasting. While using the linear relationship between the observation and state variable makes it applicable for large systems, relying on linearity introduces non-negligible bias since the true distribution will never be Gaussian. We review the ensemble Kalman filter from a statistical perspective and analyze the sources o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017